

# NODEO: A Neural Ordinary Differential Equation Based Optimization Framework for Deformable Image Registration

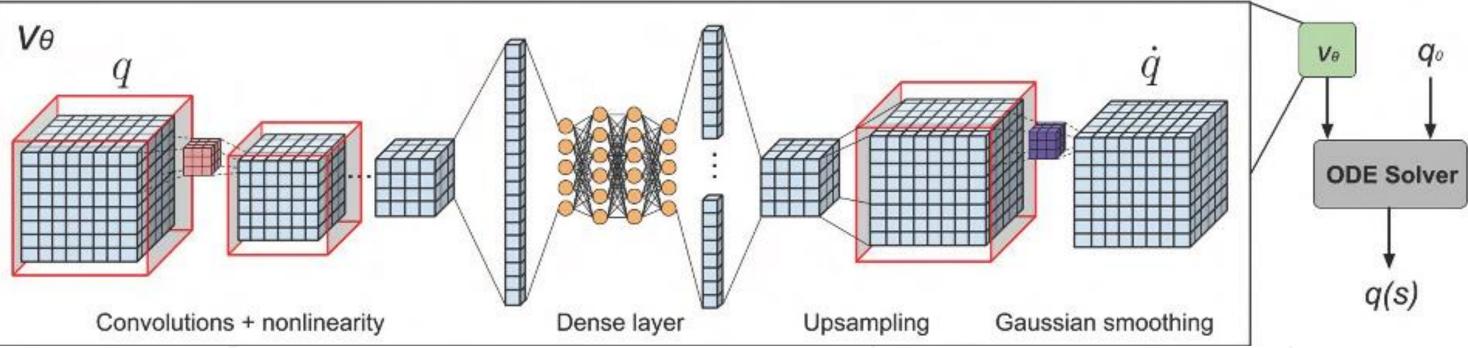
Penn General Robotics, Automation, Sensing & Perception Lab

Yifan Wu\*, Tom Z. Jiahao\*, Jiancong Wang, Paul A. YushKevich, M. Ani Hsieh, James C. Gee University of Pennsylvania, Philadelphia, PA, USA

#### Overview

- Deformable image registration (DIR), aiming to find spatial correspondence between images, is one of the most critical problems in the domain of medical image analysis.
- In this paper, we present a novel and generic diffeomorphic image registration framework that utilizes neural ordinary differential equations (NODEs). We model each voxel as a moving particle and consider the set of all voxels in a 3D image as a high-dimensional dynamical system whose trajectory determines the targeted deformation field.
- Our method leverages deep neural networks for their expressive power in modeling dynamical systems, and simultaneously optimizes for a dynamical system between the image pairs and the corresponding transformation.
- Our formulation allows various constraints to be imposed along the transformation to maintain desired regularities. Our experiment results show that our method outperforms the benchmarks under various metrics.
- Additionally, we demonstrate the feasibility to expand our framework to register multiple image sets using a unified form of transformation, which could possibly serve a wider range of applications.

### Method



We denote the location of all voxels or the voxel cloud in an image as the the ordered set q. The goal of our work is to find a transformation  $\psi$  which maps the domain of the voxel cloud onto itself, such that the transformed moving image is similar to the fixed image with desired constraints.

$$\frac{dq}{dt} = \mathcal{K}\mathbf{v}_{\theta}(q(t), t),$$

$$s.t. \ q(0) = q_0,$$

where  $\mathbf{v}_{\theta}(\cdot)$ , as parametrized by  $\theta$ , is the vector field describing the dynamics of the voxel cloud,  $q_0$  is the initial condition at t=0. We employ Gaussian kernels (for  $\Omega \subseteq \mathbb{R}^3$ , we use 3D Gaussian kernels), denoted by  $\mathcal{K}$ , as a filtering operator to enforce spatial smoothness in  $\Omega$ .

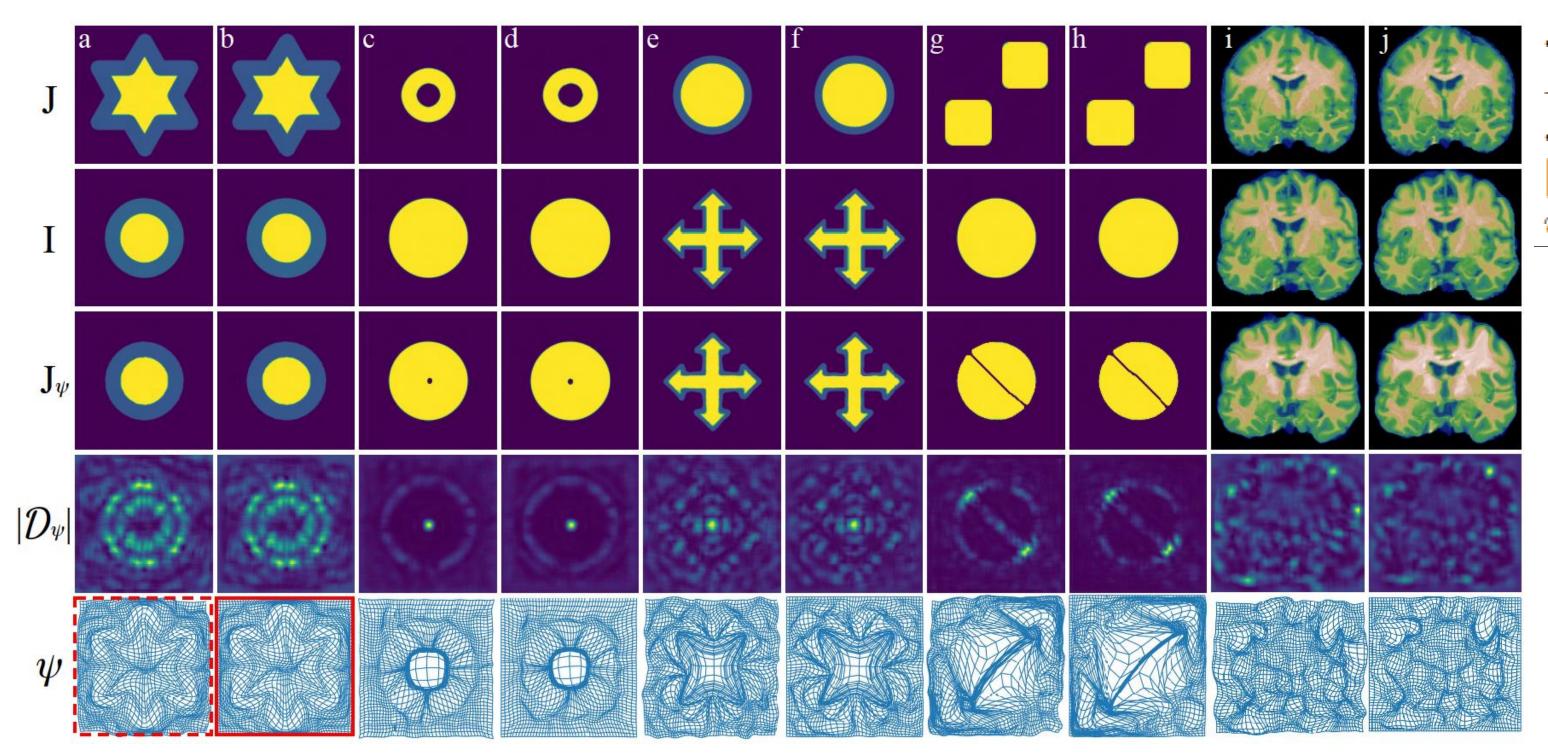
The trajectory of q is generated by integrating the ODE in equation above with the initial condition  $q_0$ . The resulting voxel cloud at t=s denotes the transformation  $\psi(q_0)$  given by:  $\psi(q_0)=q(s)=q_0+\int_0^s \mathcal{K}\mathbf{v}_\theta(q(t),t)dt.$ 

## Time-Variant Modeling



Discovering transformation on multiple images. The target images I, J, K are shown in the top row, and the model is tasked to identify a path of transformation from I to K via J. The pictured registration results are from using (a) a time-varying system with explicit time embedding, and (b) a time-invariant system where the transformation does not depend on time. The transformations  $\psi(q_t)$  are plotted on top of the warped images during the registration.

## Illustrative Examples in 2D pair images



J: moving images I: fixed images  $J_{\psi}$ : warped moving images  $|\mathcal{D}_{\psi}|$ : Jacobian determinants of  $\psi$   $\psi$ : deformation fields

We show our framework provide properties of:
topology preserving
(c, g present transformation between different topologies);
great expressive power under diffeomorphism
(a, c show smooth approximation of non-smooth manifolds);
desired constraints can be imposed (b, d, f, h, j show registration with boundary conditions).

| OASIS dataset                   | Avg. Dice (28) ↑                    | $\mathcal{D}_{\psi}(\mathbf{x}) \leq 0 \ (r^{\mathcal{D}}) \downarrow$ | $\mathcal{D}_{\psi}(\mathbf{x}) \leq 0 \ (s^{\mathcal{D}}) \downarrow$         |
|---------------------------------|-------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| SYMNet [25]                     | $0.743 \pm 0.113$                   | 0.026%                                                                 | -                                                                              |
| SyN [1]                         | $0.729 \pm 0.109$                   | 0.026%                                                                 | 0.005                                                                          |
| NiftyReg [2]                    | $0.775 \pm 0.087$                   | 0.102%                                                                 | 1395.988                                                                       |
| Log-Demons [3]                  | $0.764 \pm 0.098$                   | 0.121%                                                                 | 84.904                                                                         |
| NODEO (ours $\lambda_1 = 2.5$ ) | $0.778 \pm 0.026$                   | 0.030%                                                                 | 34.183                                                                         |
| NODEO (ours $\lambda_1 = 2$ )   | $\textbf{0.779} \pm \textbf{0.026}$ | 0.030%                                                                 | 61.105                                                                         |
| CANDI dataset                   | Avg. Dice (28) ↑                    | $\mathcal{D}_{\psi}(\mathbf{x}) \leq 0 \ (r^{\mathcal{D}}) \downarrow$ | $\mathcal{D}_{\psi}(\mathbf{x}) \leq 0 \ (s^{\mathcal{D}}) \downarrow$         |
| SYMNet [25]                     | $0.778 \pm 0.091$                   | $1.4 \times 10^{-4}\%$                                                 | 1.043                                                                          |
| SyN [1]                         | $0.739 \pm 0.102$                   | 0.018%                                                                 | 0.012                                                                          |
| NiftyReg [2]                    | $0.775 \pm 0.088$                   | 0.101%                                                                 | 1395.987                                                                       |
| Log-Demons [3]                  | $0.786 \pm 0.094$                   | 0.071                                                                  | 49.274                                                                         |
| NODEO (ours $\lambda_1 = 2.5$ ) | $0.801 \pm 0.011$                   | $7.5 \times 10^{-8}\%$                                                 | 1.574                                                                          |
| NODEO (ours $\lambda_1 = 2$ )   | $\textbf{0.802} \pm \textbf{0.011}$ | $1.8 \times 10^{-7}\%$                                                 | 4.341                                                                          |
| CANDI dataset                   | Avg. Dice (32) ↑                    | $\mathcal{D}_{\psi}(\mathbf{x}) \leq 0 \ (r^{\mathcal{D}}) \downarrow$ | $\mathcal{D}_{\psi}(\mathbf{x}) \leq \overline{0(s^{\mathcal{D}})} \downarrow$ |
| SYMNet [25]                     | $0.736 \pm 0.015$                   | $1.4 \times 10^{-4}\%$                                                 | 1.043                                                                          |
| SyN [1]                         | $0.713 \pm 0.177$                   | 0.018%                                                                 | 0.012                                                                          |
| NiftyReg [2]                    | $0.748 \pm 0.160$                   | 0.101%                                                                 | 1395.987                                                                       |
| Log-Demons [3]                  | $0.744 \pm 0.160$                   | 0.071                                                                  | 49.274                                                                         |
| NODEO (ours $\lambda_1 = 2.5$ ) | $\textbf{0.760} \pm \textbf{0.011}$ | $7.5 \times 10^{-8}\%$                                                 | 1.574                                                                          |
| NODEO (ours $\lambda_1 = 2$ )   | $\textbf{0.760} \pm \textbf{0.011}$ | $1.8 \times 10^{-7}\%$                                                 | 4.341                                                                          |

### Results

Evaluation metric: Dice Similarity Coefficient, Negative Jacobian Determinant. Two brain MRI datasets: OASIS and CANDI.

Image Size:  $160 \times 192 \times 144$ . Total number of model parameters: around 3/4 of the number of voxels in the image.

Runtime: around 80s for one pair. GPU memory: 3863MB.

